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Agenda 

• Network analysis and deep graph learning for drug discovery

• Chemical space:
• DILI toxicophores (patient level data)
• Modeling substructures (bioassay data)
• Modeling multiple bioassay data simultaneously for toxicity
• Side effects of drugs (patient level data)

• Genetic space:
• Degree of toxicity (cell line data)



Chemical Space



Toxicophore 
Substructures of drug related to toxicity
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Question: Is the compound below toxic or DILI positive? 



Vindesine is an inhibitor of mitosis that 
is used as a chemotherapy drug

We determine vindesine as toxic drug by 
identifying two subgraphs of vindesine 
that are frequent in DILI positive drugs.

https://en.wikipedia.org/wiki/Mitotic_inhibitor
https://en.wikipedia.org/wiki/Chemotherapy


Pre-defined Split
(temporal) Train Valid Test

Positive 455 - 148

Negative 293 - 98

Benchmark split Train Valid Test

Positive 175 11 50

Negative 150 43 46
Huang, Kexin, et al. NeurIPS (2021).

Xu, Youjun, et al. Journal of chemical information and modeling 55.10 (2015): 2085-2093.

DILI Benchmark Data Sets

• US FDA – DILIst 
(DILIrank + LiverTox + Suzuki + Greene + Zhu)

• TDC – DILI 
(NCTR + Greene + Xu)

To investigate whether the developed model could utilize the accumulated DILI 
information from early approved drugs to predict later approved ones, we chronologically 
divided the 1002 drugs into training and test sets based on the initial approval year. The 
year 1997 was used as a threshold since the Food and Drug Administration Modernization 
Act (FDAMA) (https://www.fda.gov/regulatoryinformation/selected-amendments-fdc-
act/food-and-drugadministration-modernization-act-fdama-1997) was implemented at 
that time. The FDAMA of 1997 aimed to promote regulatory evaluation by adopting
emerging technologies and eliminate unexpected adverse drug reactions in drug products. 
The drugs approved before and after 1997 were divided into a training set and test set, 
respectively. Accordingly, the training set consisted of 753 drugs (455 DILI positive/298 DILI 
negative), and the test set included 249 drugs (149 DILI positive/100 DILI negative).

Li, Ting, et al. Chemical Research in Toxicology 34.2 (2020): 550-565.

[NCTR data set]
• Chen, M.; Hong, H.; Fang, H.; Kelly, R.; Zhou, G.; Borlak, J.; Tong, W. Toxicol. Sci. 2013, 136, 242.
• Chen, M.; Vijay, V.; Shi, Q.; Liu, Z.; Fang, H.; Tong, W. Drug Discovery Today 2011, 16, 697−703.

[Greene data set]
• Greene, N.; Fisk, L.; Naven, R. T.; Note, R. R.; Patel, M. L.; Pelletier, D. J. Chem. Res. Toxicol. 2010, 23, 

1215− 1222.

[Xu data set]
• Xu, J. J.; Henstock, P. V.; Dunn, M. C.; Smith, A. R.; Chabot, J. R.; de Graaf, D. Toxicol. Sci. 2008, 105, 

97−105.



Our Approach

❑ In the human liver, drug metabolizes in a structure-dependent 

manner (e.g. CYP enzymes).

→ Graph based approach for subgraph identification

❑ Identifying supervised subgraph features (toxicophore) can provide 

understanding on the mechanism of DILI.

→ Supervised Random Walk

❑ There are favorable/avoidable structural patterns in drug design.

→ Frequent subgraph patterns by SMARTS



Workflow of Our Approach 
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Performance Comparison

Method Description AUC

DeepDILI 0.659

GraphLOG 0.566

MolHGCN -

Unsupervised

(ICLR, 2020)

AttrMasking 0.672

EdgePred 0.611

ContextPred 0.627

InfoMax 0.665

SSM

(Our Approach)

Unsupervised 0.669

Random Forests (RF) 0.693

Feature Selection + RF

(Features: 10,459 → 2,537)
0.694

Ensemble Classifier (RF + MLP) 0.720

a) Performance – DILIst data

 SOTA

GNN Methods

GIN Methods

Method Description AUC

Source: 

TDC Benchmark

XGBoost 0.925

AttrMasking 0.919

SimGCN 0.909

AttentiveFP 0.886

DeepPurpose (RDKit2D + MLP) 0.875

ContextPred 0.861

GCN 0.859

NeuralFP 0.851

DeepPurpose (Morgan + MLP) 0.832

DeepPurpose (CNN) 0.792

GraphLOG 0.820

MolHGCN -

SSM

(Our Approach)

Unsupervised 0.929

Random Forests (RF) 0.934

Feature Selection + RF

(Features: 10,973 → 790)
0.880

Ensemble Classifier (RF + MLP) 0.927

b) Performance - TDC data

 SOTA



❑ Goal: Identifying common subgraph patterns

❑ Combination of N subgraphs (N = 2, 3, …)

❑ Subgraphs to SMARTS (e.g. CCC=O.CC(C)C=O) → 2-mer

❑ Find exactly matched frequent & non-overlapping subgraph 

patterns in data sets.

❑ Use subgraphs of minimum support: 1% → 943 subgraphs

Sub1 Sub2

{subgraph1}.{subgraph2}…{subgraphN}

Mining Frequent Subgraph Patterns by SMARTS

Partial Credit: 신원석 (SNU)

*SMILES (Simplified Molecular-Input Line Entry System): String formatted representation of chemical compounds

*SMARTS (SMILES ARbitrary Target Specification): Improved version of SMILES to specify substructural patterns in molecules.



Quinolone antibiotic

Penicillin antibiotic

Carbonic anhydrase inhibitor

Antiviral / anti-flu

antineoplastics

Atypical antipsychotic

Antimalarial

SupportTox:  3.96%

SupportNonTox: 0.00%

Drug Class specific Frequent DILI Patterns

❑ In FDA: DILIst data set,

Pattern: {ccn}.{ccccccc}.{CCNCC} only found in DILI-positive compounds.



Generalizing substructures 
with deep learning technologies



Dohyeon Kim

Molecular Property Prediction through
Fragment-based Bi-directional Hierarchical Graph Neural Network

Bio & Health Informatics Lab Under review



Model Architecture – Fragmentation Methods Methods

Bio & Health Informatics Lab

Constructed a Hierarchical Graph Structures Using Fragmentation Methods 

BRICS - breaks retrosynthetic bonds

• Fragmentation Methods 

Murcko - captures core scaffold structure

Functional Group - leaves out functional groups

• Hierarchical Graph Structure

Fragment-level Graph

Atom-level whole Graph

GIN message passing algorithm
for both atom and fragment-level graph



Model Architecture - Overview Methods

Bio & Health Informatics Lab

BRICS

Murcko

Functional
Group

Final
Prediction

Fragment
Embeddings

Atom
Embeddings

Self-Attention
Layer

Global
Add

Pooling

x N times

Self-Attention
Layer

Embedding
Layer

Graph 
Representation

Predictor
Layer

Graph Representations from Different Fragmentation Methods Concatenate Graph Representations
for Final Prediction



Model Architecture – Self-Attention Methods

Bio & Health Informatics Lab

Self-Attention to Improve Interpretability

Fragment
Embeddings

Atom
Embeddings

Self-Attention
Layer

x N times

Self-Attention
Layer

𝐺 transformed into 𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖 Multi-Head Attention

Fragment
Embeddings

Atom
Embeddings



Model Performance Comparison Results

Bio & Health Informatics Lab



Attention Visualization - ToxCast

TOX21_Aromatase_Inhibition : inhibition of the enzyme aromatase
    - Aromatase : an enzyme that plays a critical role in the biosynthesis of estrogens.



Modeling bioassays simultaneously 
for modeling toxicity



Multi-Task Aware Learnable Prototypes on Few Shot 
learning for Molecular Property Prediction 

Dr. Sangseon Lee

Under review



Why Multi-task Learning?
A Number of Assasy for Testing Toxicity 

This study used curated data sets, MoleculeNet (Chemical Science 2019) which is standard test data 
sets for AI research (a little bit outdated).

• Tox21: 

• Qualitative toxicity measurements for 8,014 molecules with 12 tasks

• SIDER: 

• Drug side-effects on 27 organs according to MedDRA classification for 1,427 molecules

• Toxcast:

• Qualitative toxicity measurements for 8,615 molecules with 617 tasks



Motivation of Learning Prototypes
- Molecular property prediction in few-shot learning

➢ Limitation of existing 
methods
❖ Focus on a single property
❖ Neglect interrelated 

properties of molecules

➢Proposed approach

- Learnable Prototype 
vectors –

❖ Capture the shared 
knowledge among multiple 
interrelated molecular 
properties

24

Existing methods Proposed method



Overview of MTLP
- Multi-Task informed Learnable Prototype -

25

➢  (a) Learning of the prototype vectors in a meta-learning framework

➢  (b) A stochastic attention mechanism & multi-view contrastive learning losses

Active prototype vector

Molecular embedding

Inactive prototype vector



Comparison with baselines

26

(a) Performance on benchmark datasets

(b) Visualization of a chemical space

(c) Ratio of accurately predicting multiple 

molecular properties.



Examples of Few-shot Prediction

27

(a)

(c) (d)

(b)



Predicting side effects 
with deep learning technologies



Dual representation learning 
for predicting drug-side effect frequency

using protein target information

Sungjoon Park†, Sangseon Lee†, Minwoo Pak, and Sun Kim*

IEEE Journal of Biomedical and Health Informatics 2024



Dataset

• 750 drugs × 994 side effects from SIDER database
• frequency ∈ {0, 1, 2, 3, 4, 5}

• Drug features
: molecular graph, drug targets, drug-drug similarity

• Side effect features
: MedDRA category, GloVe word embedding

STITCHDrugBankSMILES string

MedDRA Wikipedia



Model architecture



Drug protein target encoding

Pak, Minwoo, et al. "Improved drug response prediction by drug target data integration via network-based profiling." Briefings in Bioinformatics 24.2 (2023): bbad034.

1.
Construct drug-specific
protein-protein interaction
(PPI) network

2.
Start network propagation 
(NP) with target proteins 
as seed genes

3.
Get top 100 proteins as a 
result of NP

4.
Get genes of enriched 
pathway as new seed 
genes;
repeat until convergence



Adaboost

• An ensemble method to rebalance the sampling weights for the 
training data

• Effectively integrates the use of heterogeneous drug features



Results

[28] Briefings in Bioinformatics, vol. 22, no. 6, 2021. 
[30] Briefings in Bioinformatics, vol. 23, no. 1, 2022. 
[31] Briefings in Bioinformatics, vol. 23, no. 2, 2022. 



Results (cont’d)

• External validation using 
independent nine drugs

• Fully utilizes drug-drug similarity 
features



Results (cont’d)

Base model step in Adaboost

• Drugs with ambiguous target 
does not benefit from protein 
target information

• Targeted = w/ explicit targets

• Cytotoxic = w/ ambiguous targets

• Cytotoxic drugs initially show 
worse prediction, but improve as 
Adaboost continues



Ultimately, we want to show
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(vitamin B12 dificiency)

Trichlormethiazide

(diuretic)

Acetaminophen

(fever/pain treatment)

Methylchloroform

(photoresist solvent)

(central nervous system depressant)
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Toxic

Graph Learning for Toxicity and Side Effects



Degree of Toxicity 
in terms of Genetic Space



A Multi-dimensional Transcriptomic Ruler for 
Liver Toxicity

Inyoung Sung†, Sangseon Lee†, Dongmin Bang, Jungseob Yi, and Sun Kim

Under review



Dataset
• 1,554 drug hepatotoxicity labeled data from DILIrank and LiverTox

• Toxic labeled  drugs: 456

• Non-toxic labeled drugs: 1,098

• 17,738 drug-treated gene expression data from LINCS

• DMSO-treated samples: 2,791

• Non-toxic drug-treated samples: 11,333 

• Toxic drug-treated samples: 6,405 



Scientific Question and Our Approach

• Which of transcriptome profile represents DILI?

• Toxicity cannnot hardly be defiend as a binary decision, toxic vs. non-toxic.
• Degree of toxicty needs to be defined according to dose and treatment time.

• We construct a transcriptomic ruler for measuring degree of toxicity!



Step 1: Generate dual-boundaries

• Goal: identification of region containing potentially toxic (PT) samples.

Maximumly perturbed transcriptomic state → Toxic transcriptomic signature!

• Use Dual-SVDD to generate dual-boundaries in two steps.

*PT: potentially toxic



Step 1: Dual-boundaries of Toxic Signature

a. Dual-SVDD results

• Potential toxic (PT) samples

: 64 drug-treated samples

*PT: potentially toxic

b. Examples of PT samples



Step 2: Define of a liver toxicity distance

• Goal: measurement the degree of liver toxicity of drug-treated samples

• Proposed liver toxicity distance to measure hepatotoxicity  of drug-induced samples 

based on distance from  potentially toxic samples.

• Constructing toxic space by kernel PCA with RBF kernel

*Dysregulation of mechanism

*RBF: Radial Basis Function



Ruler for a liver toxicity distance

• Goal: measurement the degree of liver toxicity of drug-treated samples

• Distance cross-validation



Step 3: Biological Mechanisms for Liver Toxicity 

• Because liver damage can occur through various factors and processes, it is necessary to 

consider the heterogeneity of the mechanism of liver injury.

• Here, we propose a biologically interpretable multi-dimensional distance



Knowledge-based approach for Toxic MoA

• Literature search to identify well-known liver injury mechanisms

Journal of hepatology
HAN, Hui, et al., 2020

Nature Reviews Disease Primers
ANDRADE, Raul J., et al., 2019

Nature Reviews Drug Discovery
WEAVER, Richard J., et al., 2020



Use Prior-Knowledge for Toxic MoA

• 5-dimensional distance

• Oxidative stress with 6 pathways

• Immunological response with 3 pathways

• Altered lipid metabolism with 13 pathways

• Mitochondrial dysfunction with 2 pathways

• Bile acids accumulation with 2 pathways



Multi-dimensional Distance Examples

• Potential toxic samples

Drug Troglitazone

Cell line VCAP

Time 24hour

Dose 0.1uM

Drug Dactinomycin

Cell line HCC515

Time 24hour

Dose 10uM

Drug Doxorubicin

Cell line PC3

Time 24hour

Dose 10uM



Multi-dimensional Distance Examples (cont’d)

• Non-Potential toxic samples

Drug Dactinomycin

Cell line HA1E

Time 24hour

Dose 10uM

Drug Amodiaquine

Cell line PC3

Time 6hour

Dose 10uM

Drug Daunorubicin

Cell line HEPG2

Time 24hour

Dose 10uM

*Toxic labeled drug *Toxic labeled drug *Non-toxic labeled drug



Privileges of Working with Talented People



T H A N K  YO U ! !

감사합니다 !
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